На сайте появилась новая вкладка «Курсы», а главное, выложены материалы этого года (слайды и видео) курса ПЗАД, который читается для студентов ВМК МГУ, а ниже немного об истории курса.

На сайте появилась новая вкладка «Курсы», а главное, выложены материалы этого года (слайды и видео) курса ПЗАД, который читается для студентов ВМК МГУ, а ниже немного об истории курса.
Эта заметка написана несколько в другом стиле, чем многие предыдущие… Поскольку автор постоянно совершенствует курс по машинному обучению, здесь берётся самая простая и популярная тема классических курсов по ML, и показывается, о чём в ней можно / стоит ещё рассказать (хотя об этом часто забывают), какие здесь есть сложные и интересные вопросы (если Вы хотите проверить свои или чужие знания по линейной регрессии).
Этот пост продолжает тему оценки качества алгоритмов машинного обучения для решения задач классификации. Рассмотрим кривые «полнота-точность», Gain, Lift, K-S (machine learning curves) и таблицу для анализа доходности. Самое главное — мы определим все кривые через уже знакомые нам понятия, часто используемые в ML (а не как обычно: для каждой кривой придумывается своя терминология).
Этот пост продолжает серию про функции ошибки и функционалы качества в машинном обучении. Сейчас разберёмся с самой простой подтемой — как измерять качество чёткого ответа в задачах бинарной классификации. Уровень для чтения — начальный;)
В этом блоге было уже много постов про разные частные случаи ансамблей. Теперь просто их общая систематизация (точнее, вступительная часть в повествовании про ансамблирование), в результате которой получится самый подробный обзор про ансамблирование в рунете;)
Поговорим о приёмах, которые я всегда называл «подменой задачи», поскольку вместо исходной задачи машинного обучения здесь решается другая задача (с модифицированными данными и другим целевым вектором) с целью анализа данных и улучшения качества решения исходной задачи. В западных источниках некоторые описанные приёмы называются специальными терминами, например, Adversarial Validation, но на русский они всё равно плохо переводятся, поэтому, как я называю с 2010 года – «подмена задачи». Для понимания материала нужно знать постановку задачи машинного обучения и основные термины.
Сегодня поговорим о нескольких «околоаналитических» темах, которые обычно не затрагивают в учебных курсах по аналитике (бизнес- или ML-), поскольку они совсем не о математике, а больше о психологии. Но их знание не менее важно, чем знание современных методов решения задач, поскольку часто с «хорошим» решением потом нечего делать.
Сегодня будет сделанный с любовью обзор функций ошибок и функционалов качества в задачах регрессии.
Давненько я не публиковал никаких тестов… итак, новый провокационный шедевр: «странный тест по машинному обучению». Нельзя сказать, что он проверяет какие-то фундаментальные знания, но со всеми вопросами, которые в нём присутствуют, порядочный человек, вращающийся в DS-среде, сталкивается.
Машинное обучение, в основном, отвечает на вопросы КАКАЯ(ОЙ) / КТО(ЧТО) / СКОЛЬКО? «Что изображено?», «какая будет цена акции?» и т.п. Самый естественный следующий человеческий вопрос: ПОЧЕМУ? Кроме ответа чёрного ящика (будь то бустинг или нейросеть), нам хотелось бы получить аргументацию этого ответа… Ниже представляю обзор проблематики интерпретации (это одна из тем, которая есть в моём курсе для магистров ММП ВМК МГУ, и которой не уделяется время в любом другом курсе по машинному обучению и анализу данных).